Noisy dynamic simulations in the presence of symmetry: Data alignment and model reduction

Publication Year
2013

Type

Journal Article
Abstract

We process snapshots of trajectories of evolution equations with intrinsic symmetries, and demonstrate the use of recently developed eigenvector-based techniques to successfully quotient out the degrees of freedom associated with the symmetries in the presence of noise. Our illustrative examples include a one-dimensional evolutionary partial differential (the Kuramoto-Sivashinsky) equation with periodic boundary conditions, as well as a stochastic simulation of nematic liquid crystals which can be effectively modeled through a nonlinear Smoluchowski equation on the surface of a sphere. This is a useful first step towards data mining the symmetry-adjusted ensemble of snapshots in search of an accurate low-dimensional parametrization and the associated reduction of the original dynamical system. We also demonstrate a technique (Vector Diffusion Maps) that combines, in a single formulation, the symmetry removal step and the dimensionality reduction step. (C) 2013 Elsevier Ltd. All rights reserved.

Journal
Computers & Mathematics with Applications
Volume
65
Issue
10
Pages
1535-1557
Date Published
05/2013
ISBN
0898-1221
Short Title
Comput. Math. Appl.