Mathematical Modeling and Steady-State Analysis of a Co-Ionic-Conducting Solid Oxide Fuel Cell

Publication Year
2012

Type

Book Chapter
Abstract

A mathematical model of a solid oxide fuel cell (SOFC) with a BaCe1-xSmxO3-alpha type electrolyte is developed. This class of electrolytes exhibits both proton and oxygen-anion conductivity. To develop the model, heat transfer, mass transfer and electrochemical processes are taken into account. The existence of steady-state multiplicity in this class of fuel cells is investigated under three operation modes: constant ohmic load, potentiostatic and galavanostatic. The cell has up to three steady states under the constant ohmic load and potentiostatic modes, and a unique steady state under the galvanostatic mode. This same steady state behavior has been observed in oxygen-anion conducting and proton conducting SOFCs. Interestingly, this study shows that in this class of SOFCs, thermal and concentration multiplicities can coexist; ignition in the solid temperature is accompanied by extinction in the fuel and oxygen concentrations, and ignition and extinction in concentrations of water in the anode and cathode sides, respectively.

Book Title
2012 American Control Conference (acc)
Pages
4269-4274
Publisher
Ieee Computer Soc
City
Los Alamitos
ISBN
978-1-4577-1096-4