Equation-free analysis of spike-timing-dependent plasticity

Publication Year
2015

Type

Journal Article
Abstract

Spike-timing-dependent plasticity is the process by which the strengths of connections between neurons are modified as a result of the precise timing of the action potentials fired by the neurons. We consider a model consisting of one integrate-and-fire neuron receiving excitatory inputs from a large number-here, 1000-of Poisson neurons whose synapses are plastic. When correlations are introduced between the firing times of these input neurons, the distribution of synaptic strengths shows interesting, and apparently low-dimensional, dynamical behaviour. This behaviour is analysed in two different parameter regimes using equation-free techniques, which bypass the explicit derivation of the relevant low-dimensional dynamical system. We demonstrate both coarse projective integration (which speeds up the time integration of a dynamical system) and the use of recently developed data mining techniques to identify the appropriate low-dimensional description of the complex dynamical systems in our model.

Journal
Biological Cybernetics
Volume
109
Pages
701-714
Date Published
12/2015
ISBN
0340-1200
Accession Number
WOS:000365514300009

Times Cited: 01432-0770