Coarse-graining the dynamics of a driven interface in the presence of mobile impurities: Effective description via diffusion maps

Publication Year
2009

Type

Journal Article
Abstract

Developing effective descriptions of the microscopic dynamics of many physical phenomena can both dramatically enhance their computational exploration and lead to a more fundamental understanding of the underlying physics. Previously, an effective description of a driven interface in the presence of mobile impurities, based on an Ising variant model and a single empirical coarse variable, was partially successful [M. Haataja et al., Phys. Rev. Lett. 92, 160603 (2004)]; yet it underlined the necessity of selecting additional coarse variables in certain parameter regimes. In this paper we use a data mining approach to help identify the coarse variables required. We discuss the implementation of this diffusion map approach, the selection of a similarity measure between system snapshots required in the approach, and the correspondence between empirically selected and automatically detected coarse variables. We conclude by illustrating the use of the diffusion map variables in assisting the atomistic simulations and we discuss the translation of information between fine and coarse descriptions using lifting and restriction operators.

Journal
Physical Review E
Volume
80
Issue
3
Pages
031102
Date Published
09/2009
ISBN
1539-3755
Short Title
Phys. Rev. E