Autonomous colloidal crystallization in a galvanic microreactor

Publication Year
2012

Type

Journal Article
Abstract

We report on a technique that utilizes an array of galvanic microreactors to guide the assembly of two-dimensional colloidal crystals with spatial and orientational order. Our system is comprised of an array of copper and gold electrodes in a coplanar arrangement, immersed in a dilute hydrochloric acid solution in which colloidal micro-spheres of polystyrene and silica are suspended. Under optimized conditions, two-dimensional colloidal crystals form at the anodic copper with patterns and crystal orientation governed by the electrode geometry. After the aggregation process, the colloidal particles are cemented to the substrate by co-deposition of reaction products. As we vary the electrode geometry, the dissolution rate of the copper electrodes is altered. This way, we control the colloidal motion as well as the degree of reaction product formation. We show that particle motion is governed by a combination of electrokinetic effects acting directly on the colloidal particles and bulk electrolyte flow generated at the copper-gold interface. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4755807]

Journal
Journal of Applied Physics
Volume
112
Issue
7
Pages
074905
Date Published
10/2012
ISBN
0021-8979
Short Title
J. Appl. Phys.