Data Mining for Parameters Affecting Polymorph Selection in Contorted Hexabenzocoronene Derivatives
Publication Year
2018
Type
Journal Article
Abstract
The macroscopic properties of mol. materials can be drastically influenced by their solid-state packing arrangements, of which there can be many (e.g., polymorphism). Strategies to controllably and predictively access select polymorphs are thus highly desired, but computationally predicting the conditions necessary to access a given polymorph is challenging with the current state of the art. Using derivatives of contorted hexabenzocoronene, cHBC, we employed data mining, rather than first-principles approaches, to find relationships between the crystallizing mol., postdeposition solvent-vapor annealing conditions that induce polymorphic transformation, and the resulting polymorphs. This anal. yields a correlative function that can be used to successfully predict the appearance of either one of two polymorphs in thin films of cHBC derivatives Within the postdeposition processing phase space of cHBC derivatives, we have demonstrated an approach to generate guidelines to select crystallization conditions to bias polymorph access. We believe this approach can be applied more broadly to accelerate the predictions of processing conditions to access desired mol. polymorphs, making progress toward one of the grand challenges identified by the Materials Genome Initiative.
Journal
Chem. Mater.
Volume
30
Pages
3330-3337
ISBN
0897-4756
CAplus AN 2018:812918; MEDLINE PMID: 31178626 (Journal; Article)