BROWN, HS, Jolly, Kevrekidis, ES TITI, Roose, DEDIER, and SPENCE. 1990. USE OF APPROXIMATE INERTIAL MANIFOLDS IN BIFURCATION CALCULATIONS. Vol. 313. Dordrecht: Kluwer Academic Publ. Reference Link
Jolly, Kevrekidis, and ES TITI. (1990) 1990. “APPROXIMATE INERTIAL MANIFOLDS FOR THE KURAMOTO-SIVASHINSKY EQUATION - ANALYSIS AND COMPUTATIONS”. Physica DPhysica D 44 (1-2): 38-60. Reference Link
FOIAS, Jolly, Kevrekidis, and ES TITI. (1994) 1994. “ON SOME DISSIPATIVE FULLY DISCRETE NONLINEAR GALERKIN SCHEMES FOR THE KURAMOTO-SIVASHINSKY EQUATION”. Physics Letters APhysics Letters A 186 (1-2): 87-96. Reference Link
Johnson, Jolly, and Kevrekidis. (2001) 2001. “The Oseberg Transition: Visualization of Global Bifurcations for the Kuramoto-Sivashinsky Equation”. International Journal of Bifurcation and ChaosInternational Journal of Bifurcation and Chaos 11 (1): 1-18. Reference Link
Jolly, Kevrekidis, and ES TITI. (1991) 1991. “Preserving Dissipation in Approximate Inertial Forms for the Kuramoto-Sivashinsky Equation”. Journal of Dynamics and Differential EquationsJournal of Dynamics and Differential Equations 3 (2): 179-97. Referenced from dx.doi.org: Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation. Reference Link
FOIAS, Jolly, Kevrekidis, GR SELL, and ES TITI. (1988) 1988. “ON THE COMPUTATION OF INERTIAL MANIFOLDS”. Physics Letters APhysics Letters A 131 (7-8): 433-36. Reference Link
FOIAS, Jolly, Kevrekidis, and ES TITI. (1991) 1991. “DISSIPATIVITY OF NUMERICAL SCHEMES”. NonlinearityNonlinearity 4 (3): 591-613. Reference Link
Johnson, Jolly, and Kevrekidis. 1997. “Two-Dimensional Invariant Manifolds and Global Bifurcations: Some Approximation and Visualization Studies”. Numerical AlgorithmsNumerical Algorithms 14 (1-3): 125-40. Reference Link